SCALABLE SCIENTIFIC SOFTWARE FOR EXTREME SCALE APPLICATIONS: FUSION ENERGY SCIENCE

William M. Tang*
Princeton University, Princeton, NJ USA

ARGONNE TRAINING PROGRAM ON EXTREME SCALE COMPUTING (ATPESC 2015)

St. Charles, Illinois

August 10, 2015

*Collaborators: Bei Wang (PU), S. Ethier (PPPL), K. Ibrahim (LBNL), K. Madduri (Penn State U), S. Williams (LBNL), L. Oliker (LBNL), T. Williams (ANL), C. Rosales-Fernandez (TACC), T. Hoefler (ETH-Zurich), G. Kwasniewski (ETH-Zurich), Yutong Lu (NUDT)

<u>INTRODUCTION</u>

- I. FOCUS: HPC Performance Scalability and Portability in a representative DOE application domain
- → Illustration of domain application that delivers discovery science, good <u>performance scaling</u>, while also helping provide viable metrics on top supercomputing systems such as <u>"portability," "time to solution," & associated "energy to solution"</u>
- II. HPC APPLICATION DOMAIN: Fusion Energy Science

Reference: "Scientific Discovery in Fusion Plasma Turbulence Simulations @ Extreme Scale;" W. Tang, B. Wang, S. Ethier, Computing in Science and Engineering (CiSE), vol. 16. Issue 5, pp.44-52, 2014

III. CURRENT PROGRESS: Deployment of innovative algorithms within modern code that <u>delivers new scientific insights on world-class systems</u> → currently: Mira; Sequoia; K-Computer; Titan; Piz Daint; Blue Waters; Stampede; TH-2

& in near future on: Summit (via CAAR), Cori, Stampede-II, Tsubame 3.0, -----

IV. COMMENTS ON FUTURE PROGRESS: need <u>algorithmic & solver advances</u> <u>enabled by Applied Mathematics</u> – in an interdisciplinary "Co-Design" type environment together with Computer Science & Extreme-Scale HPC Domain Applications

Performance Development of HPC over the Last 22 Years from the Top 500 (J. Dongarra)

Applications Impact -> Actual value of extreme Scale HPC to scientific domain applications & industry

Context: recent White House announcement of NATIONAL STRATEGIC COMPUTING INITIATIVE

- Practical Considerations: "Better Buy-in" from Science & Industry requires:
 - Moving beyond <u>"voracious"</u> (more of same just bigger & faster) to <u>"transformational"</u> (achievement of major new levels of scientific understanding)
 - Improving experimental validation, verification & uncertainty quantification to enhance realistic predictive capability of both hypothesis-driven and hig-data-driven statistical approaches
 - Deliver software engineering tools to improve "time to solution" and "energy to solution"
 - <u>David Keyes:</u> Billions of \$ of scientific software worldwide hangs in the balance until better algorithms arrive to span the <u>"architecture-applications gap."</u>

Associated Challenges:

- <u>Hardware complexity</u>: Heterogeneous multicore; gpu+cpu → <u>Summit</u>; mic+cpu → <u>Aurora</u>
- **Software challenges**: Rewriting code focused on data locality
- <u>Applications Imperative</u>: "Accountability" aspect
- → Need to provide specific examples of impactful scientific and mission advances enabled by progress from terascale to petascale to today's multi-petascale HPC capabilities

HPC SCIENCE APPLICATION DOMAIN: MAGNETIC FUSION ENERGY (MFE)

- Extremely hot plasma (several hundred million degree) confined by strong magnetic field
- <u>Turbulence</u> → Physics mechanism for energy leakage from magnetic confinement system

ITER Goal: Demonstration of Scientific and Technological Feasibility of Fusion Power

• ITER ~\$25B facility located in France & involving 7 governments representing over half of world 's population

→ dramatic next-step for Magnetic Fusion Energy (MFE) producing a sustained burning plasma

-- Today: 10 MW(th) for 1 second with gain ~1

-- ITER: 500 MW(th) for >400 seconds with gain >10

• "DEMO" demonstration fusion reactor after ITER

-- 2500 MW(th) continuous with gain >25, in a device of similar size and field as ITER

- Ongoing R&D programs worldwide [experiments, theory, computation, and technology] <u>essential to provide growing</u> <u>knowledge base for ITER operation targeted for ~ 2025</u>
- → Realistic HPC-enabled simulations required to costeffectively plan, "steer," & harvest key information from expensive (~\$1M/long-pulse) ITER shots

ITER

Boltzmann-Maxwell System of Equations

• The Boltzmann equation (Nonlinear PDE in Lagrangian coordinates):

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \mathbf{v} \cdot \frac{\partial F}{\partial \mathbf{x}} + \left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right) \cdot \frac{\partial F}{\partial \mathbf{v}} = C(F).$$

• "Particle Pushing" (Linear ODE's)

$$\frac{d\mathbf{x}_{j}}{dt} = \mathbf{v}_{j}, \qquad \frac{d\mathbf{v}_{j}}{dt} = \frac{q}{m} \left(\mathbf{E} + \frac{1}{c} \mathbf{v}_{j} \times \mathbf{B} \right)_{\mathbf{x}_{j}}.$$

• Klimontovich-Dupree representation,

$$F = \sum_{j=1}^{N} \delta(\mathbf{x} - \mathbf{x}_{j}) \delta(\mathbf{v} - \mathbf{v}_{j}),$$

• Poisson's Equation: (Linear PDE in Eulerian coordinates (lab frame)

$$\nabla^2 \phi = -4\pi \sum_{\alpha} q_{\alpha} \sum_{j=1}^{N} \delta(\mathbf{x} - \mathbf{x}_{\alpha j})$$

• Ampere's Law and Faraday's Law [Linear PDE's in Eulerian coordinates (lab frame)]

- <u>Mathematics</u>: 5D Gyrokinetic Vlasov-Poisson Equations
- Numerical Approach: Gyrokinetic Particle-in-Cell (PIC) Method

 Objective → Develop efficient numerical tool to realistically simulate turbulence and associated transport in magnetically-confined plasmas (e.g., "tokamaks") using high end supercomputers

Picture of Particle-in-Cell Method

- Charged particles sample distribution function
- Interactions occur on a grid with the forces determined by gradient of electrostatic potential (calculated from deposited charges)
- Grid resolution dictated by Debye length ("finite-sized" particles) up to gyro-radius scale

Specific PIC Operations:

- "SCATTER", or deposit, charges as "nearest neighbors" on the grid
- Solve Poisson Equation for potential
- "GATHER" forces (gradient of potential) on each particle
- Move particles (PUSH)
- Repeat...

BASIC STRUCTURE OF PIC METHOD

- System represented by set of particles
- Each particle carries components: <u>position</u>, <u>velocity</u> and <u>weight</u> (x, v, w)
- Particles interact with each other through <u>long range electromagnetic</u> forces
- Forces evaluated on grid and then interpolated to the particle
 - $\sim O(N+MlogM)$
- PIC approach involves two different data structures and two types of operations
 - Charge: Particle to grid interpolation (SCATTER)
 - Poisson/Field: Poisson solve and field calculation
 - Push: Grid to particle interpolation (GATHER)

Microturbulence in Fusion Plasmas – Mission Importance: Fusion reactor size & cost determined by balance between loss processes & self-heating rates

• "Scientific Discovery" - Transition to favorable scaling of confinement produced in simulations for ITER-size plasmas

- a/ρ_i = 400 (JET, largest present lab experiment)

- a/ρ_i = 1000 (ITER, ignition experiment)

Multi-TF simulations using 3D PIC code [Z. Lin, et al, 2002) → 1B particles, 100M spatial grid points; 7K time steps → 1st ITER-scale simulation with ion gyroradius resolution

BUT, physics understanding of problem size scaling demands high resolution requiring modern LCF's, new algorithms, & modern diagnostics for VV&UQ

→ <u>Progress enabled by DOE INCITE Projects on</u>
<u>LCF's & **G8 Fusion Exascale Project** on major international facilities

• Comparison of the project on major international facilities</u>

→ Excellent Scalability of 3D PIC Codes on modern HPC platforms enables resolution/physics fidelity needed for physics understanding of large fusion systems

→ BUT – efficient usage of current LCF 's worldwide demands code re-write featuring modern CS/AM methods addressing locality & memory demands

ILLUSTRATION OF CODE PORTABILITY

- Broad range of leading multi-PF supercomputers worldwide
- Percentage indicates fraction of overall nodes currently utilized for GTC-P experiments
- NOTE: Results in this figure are only for CPU nodes on Stampede and TH-2

ILLUSTRATION OF CODE CAPABILITY FOR INCREASING PROBLEM SIZE

New Physics Results: Fusion system size-scaling study of "trapped-electron-mode" turbulence showing the "plateauing" of the radial electron heat flux as size of tokamak increases.

GTC-P: six major subroutines

- Charge: particle to grid interpolation (SCATTER)
- Smooth/Poisson/Field: grid work (local stencil)
- Push:
 - grid to particle interpolation (GATHER)
 - update position and velocity
- **Shift**: in distributed memory environment, exchange particles among processors

Operational breakdown of time per step when using 80M grid points, 8B ions, and 8B kinetic electrons on 4K nodes of *Mira, Titan, and Piz Daint*.

GTC-P Performance Comparison on Variety of Supercomputers Worldwide [Titan, Blue Waters, Mira, Piz Daint, Stampede]

- "True weak scaling study" carried out on <u>increasing problem size</u> (four different sized plasmas labeled A to D) on a variety of leadership-class supercomputers worldwide
- Roughly 3.2M particles per process in these computations
- Both <u>1 MPI process per node</u> and <u>1 MPI process per NUMA* node</u> are considered in these studies.

*for non-uniform-memory access [NUMA] issues)

Performance Evaluation Platforms (1)

Systems	IBM BG/Q (Mira)	Cray XK7 (Titan)	Cray XC 30 (Piz Daint)	NVIDIA Kepler
CPUs per node	1	2	1	1
Interconnect	Custom 5D Torus	Gemini 3D Torus	Aries Dragonfly	-
Core	IBM A2	AMD Opteron 6274 (Interlagos)	Intel Xeon E5-2670 (Sandy Bridge)	K20x
Frequency (GHz)	1.6	2.2	2.6	0.732
Data cache per core (KB)	32	16+2048 <mark>1</mark>	32+256	64
Cores per CPU	16	8	8	14 (SMX's)
Last-level cache per CPU (MB)	32	8	16	1.5
DP GFlop/s per node	204.8	140.8	166.4	1311
STREAM GB/s per node	28	31 <mark>2</mark>	38	171

¹Each pair of cores shared 2048 KB L2 cache

Performance Evaluation Platforms (2)

Systems	Dell Cluster (Stampede)	Cray XE6 (Blue Waters)	Intel Xeon Phi (Stampede)
CPUs per node	2	4	1
Interconnect	InfiniBand Fat-Tree	Gemini 3D Torus	InfiniBand Fat-Tree
Core	Intel Xeon E5-2680 (Sandy Bridge)	AMD Opteron 6276 (Interlagos)	Intel Xeon Phi SE10P
Frequency (GHz)	2.7	2.45	1.1
Data cache per core (KB)	32+256	16+2048 <mark>1</mark>	32+512
Cores per CPU	8	8	61
Last-level cache per CPU (MB)	20	8	-
DP GFlop/s per node	345.6	313.6	1070
STREAM GB/s per node	78 <mark>2</mark>	62 <mark>2</mark>	160

¹Each pair of cores shared 2048 KB L2 cache

²NUMA

Weak Scaling of GTC-P (GPU-version) on Heterogenous (GPU/CPU) "Titan" and "Piz Daint"

- The number of particles per cell is 100
- GTC-P GPU obtains 1.7x speed up

 <u>Same code for all cases</u> → Performance difference solely due to

 hardware/system software

GTC-P Weak Scaling Results on Various Supercomputers [Titan, Blue Waters, Mira, Piz Daint, Stampede: 1 MPI per NUMA node] vertical scale = wall-clock time for 100 time-steps

GTC-P Weak Scaling Results on Various Supercomputers

[Titan, Blue Waters, Mira, Piz Daint, Stampede: 1 MPI per node]

vertical scale = wall-clock time for 100 time-steps

GTC-P Strong Scaling Results

GTC-P (adiabatic electron model) strong scaling for the 131M grid points, 13B particles case from 512 nodes on Titan (GPU), Mira and Piz Daint (GPU).

Note: plotted on log-log axes

GTC-P Strong Scaling Results

GTC-P (kinetic electron model) strong scaling for the 80M grid points, 8B ion and 8B electron case on Titan (GPU), Mira and Piz Daint (GPU).

Note → *plotted on log-log axes*

Comparative Weak Scaling Time to Solution for 6 HPC Platforms

→ Mira → Titan → Piz Daint → Sequoia → K → Stampede (SYM)

- GTC-P (adiabatic electron model) results for 4 problem sizes (2.1M, 8.2M, 32.8M, 131.3M grid points) each using 100 ions per grid point (with 200 on Sequoia);
- Problems ran at 12.5%, 25%, 50%, and 100% of maximum nodes used for each system.

GTC-P (kinetic electron) weak scaling performance using a fixed problem size per node across all systems allows comparisons of node performance.

Collaborative Studies with TH-2

- Measure MPI bandwidth between CPU to CPU ("host"), MIC to MIC ("native") and CPU to MIC ("symmetric") operation on TH-2 using the Intel MPI benchmark
- "Offload" mode version of GTC-P developed to facilitate using many MICS on one compute node
- Associated investigations include:
 - True weak scaling performance with <u>increasing problem size</u> and phase-space resolution
 - → starting from A100 problem size on 224 TH-2 nodes to D100 (ITER) problem size on 8192 nodes.
 - Deployment of 1MIC, 2MIC's and 3MIC's respectively for these weak scaling performance studies

Collaborative Studies with "Stampede"

Tasks:

- Improve intra-node communication between the host and the MICs to reduce overhead in the MPI Scatter operation in GTC-P
- Improve inter-node communication between MIC's (for particle shift operation)
- (Intel R. Rahman): optimize particle loading for symmetric runs; explore KNC intrinsics
- Move actively into next phase of true weak scaling performance studies with increasing problem size – using up to 4K MIC nodes.

GTC-P (kinetic electron model) weak scaling time-to-solution results:

- 4 problems (5M, 20M, 80M, and 321M grid points) run on each system using 100 ions and 100 electrons per grid point
- 4 congurations are run at 12.5%, 25%, 50%, and 100% of the maximum nodes used for each system.

"ENERGY TO SOLUTION" ESTIMATES (for Mira, Titan, and Piz Daint)

	CPU-Only			CPU+GPU	
	Mira	Titan	Piz Daint	Titan	Piz Daint
Nodes	4096	4096	4096	4096	4096
Power/node (W)	69.7	254.1	204.9	269.4	246.5
Time/step (s)	13.77	15.46	10.00	10.11	6.56
Energy (KWh)	1.09	4.47	2.33	3.10	1.84

 Energy per ion time step (KWh) by each system/platform for the weakscaling, kinetic electron studies using 4K nodes.

(Watts/node) * (#nodes) * (seconds per step) * (1KW/1000W) * (1hr/3600s)

• <u>Power/Energy estimates</u> obtained from system instrumentation including compute nodes, network, blades, AC to DC conversion, etc.

PORTABILITY vs. SPEED-UP STUDIES (for kinetic electron simulations)

	pushe		sorte	
Architecture	speedup	Δ LOC	speedup	Δ LOC
CPU	1.0×	0	1.0×	0
+ GPU offload	$4.75 \times$	+704	1.98×	+407
+ Xeon Phi offload	$0.45 \times$	+83	$0.95 \times$	+5

- Number of "Lines of Code (LOC)" modified provides quantitative measure of "Level of Effort" made to port and optimize GTC-P code to a specific architecture.
 - -- considered "pushe" and "sorte" operations in GTC-P code
 - -- speed-up measures:
 - → GPU: single-node Kepler vs. single Sandybridge node
 - → Xeon-Phi: single MIC vs. two Sandybridge nodes

Current Collaborative Studies for Intel MIC (TACC and ETH Zurich)

LOCAL MEMORY ISSUES:

"Holes Removal" -- > Moving particles out of a local domain creates "a hole" (no longer a valid particle location) in the associated memory space

- → efficient "particle removal algorithm" to avoid exhausting the existent local memory.
- → need to remove the hole periodically -- but <u>best to remove holes completely</u>

"Vectorization" → Improve "PUSH" & "CHARGE" operations: need to deal with two particles exhibiting different behavior at different consecutive memory locations.

- → This necessitates two separate instructions down to the computer level;
- → "Vectorization" means using a single instruction for multiple data;

"Latency"

implementation of one-side MPI communication →

2 sided: synchronized; increases latency

1 sided: unsynchronized; helps with reducing latency

APPLIED MATH LOCALITY CHALLENGE: GEOMETRIC HAMILTONIAN APPROACH TO SOLVING GENERALIZED VLASOV-MAXWELL EQUATIONS

Hamiltonian → Lagrangian → Action → Variational Optimization → Discretized Symplectic Orbits for Particle Motion

I. <u>"Ultrahigh Performance 3-Dimensional Electromagnetic Relativistic Kinetic Plasma Simulation</u>

Kevin J. Bowers, et al., Phys. Plasmas 15, 055703 (2008)

- → Basic foundation for symplectic integration of particle orbits in electromagnetic fields without frequency ordering constraints
- → Foundational approach for <u>present-day simulations of laser-plasma interactions on modern supercomputing systems</u>
- → <u>Limited applicability with respect to size of simulation region and geometric complexity</u>
- II. "Geometric Gyrokinetic Theory for Edge Plasmas"

Hong Qin, et al., Phys. Plasmas 14, 056110 (2007)

- → Basic foundation for symplectic integration of particle orbits in <u>electromagnetic low-frequency plasma following GK ordering</u>
- → Still <u>outstanding challenge</u>: Address reformulation of <u>non-local Poisson Equations</u> <u>structure</u> for electromagnetic field solve

Concluding Comments

- Presentation of a modern HPC domain application code capable of scientific discovery while providing good <u>performance scaling</u> and <u>portability</u> on top supercomputing systems worldwide – together with illustrating the key metrics of <u>"time to solution"</u> and associated <u>"energy to solution"</u>
- Illustrative HPC domain application considered: Fusion Energy Science

 **Reference: "Scientific Discovery in Fusion Plasma Turbulence Simulations @ Extreme

 Scale;" W. Tang, B. Wang, S. Ethier, Computing in Science and Engineering (CiSE), vol.

 16. Issue 5, pp.44-52, 2014
- Current progress achieved included <u>deployment of innovative algorithms within a</u> <u>modern application code (GTC-P) that delivers new scientific insights on world-class</u>

 systems → currently: Mira; Sequoia; K-Computer; Titan; Piz Daint; Blue Waters;

 Stampede; TH-2

wit future targets: Summit (via CAAR), Cori, Aurora, Stampede-II, Tsubame 3.0, -----

• Future progress will require <u>algorithmic & solver advances enabled by Applied Mathematics</u> – in an interdisciplinary "Co-Design" type environment together with Computer Science & Extreme-Scale HPC Domain Applications